Benchmark Custom Designed Clinical & Production

Freeze Dryers designed to help you build your business

Custom Designed to Meet Your Requirements

Pilot
 Small Scale
 Sterile or Non Sterile
 Bulk (to 320 sq ft)
 Stoppering (to 240 sq ft)
 API Manufacturing

SP Scientific Benchmark Lyophilizers - Shelf Area & Clearance												
Model		1000	2000	3000	3500	4000	4500	5000	5500	6000	6500	
Shelf Size		410 x 610	510 x 760	610 x 915	610x 1220	610x 915	610x 1220	915 x 1220	1220x 1220	915x 1220	1220x 1220	
	Inches	16 x 24	20 x 30	24 x 36	24 x 48	24 I 36	24 x 48	36 x 48	48 x 48	36 x 48	48 x 48	
2	Area m ² (ft2)	0.49 (5.3)	0.77 (8.33)									
	Clearance (mm)	169	215									
3	Area m ⁴ (ft2) Clearance	0.74 (8.0)	1.16 (12.0)	1.67 (18.0)								
	(mm)	108	139	167								
4	Area m ² (ft2)	0.99 (10.47)	1.55 (16.67)	2.23 (24.0)	2.97 (32.0)	2.28 (24.0)	2.97 (32.0)	4.48 (48.0)	5.34 (64.0)			
	Clearance (mm)	78	101	122	122	225	225	270	270			
5	Area m ² (ft2)	1.24 (13.33)	1.93 (20.8)	2.79 (30.0)	3.71 (40.0)	2.79 (30.0)	3.71 (40.0)	5.61 (60.0)	7.43 (80.0)			
	Clearance (mm)	60	78	95	95	175	175	210	210			
6	Area m ² (ft2)	1.5 (16.0)	2.32 (25.0)	3.34 (36.0)	4.46 (48.0)	3.34 (36.0)	4.46 (48.0)	6.72 (72.0)	8.91 (96.0)	6.72 (72.0)	8.91 (96.0)	
	Clearance (mm)	48	63	77	77	145	145	170	170	255	255	
7	Area m ² (ft2)		2.7 (29.17)	3.9 (42.0)	5.2 (56.0)	3.9 (42.0)	5.2 (56.0)	7.85 (84.0)	10.4 (112.0)	785 (84.0)	10.4 (112.0)	
	(mm)		52	64	64	120	120	145	145	215	215	
8	Area m ² (ft2)			4.46 (48.0)	5.94 (64.0)	4.46 (48.0)	5.94 (64.0)	8.97 (96.0)	11.89 (128.0)	8.97 (96.0)	11.89 (128.0)	
	Clearance (mm)			54	54	105	105	125	125	185	1.85	
9	Area m ² (ft2)					5.05 (54.0)	6.68 (72.0)	10.09 (108.0)	13.37 (144.0)	10.09 (108.0)	13.37 (144.0)	
	(mm)					92	92	110	110	163	163	
10	Area m ⁴ (ft2)					5.61 (60.0)	7.43 (80.0)	11.21 (120.0)	14.86 (160.0)	11.21 (120.0)	14.86 (160.0)	
	(mm)					82	82	3.8 95	95	145	145	
11	Area m ² (ft2)					6.17 (66.0)	8.17 (88.0)	12.34 (132.0)	16.35 (176.0)	12.34 (132.0)	16.35 (176.0)	
	Clearance (mm)					72	72	85	85	130	130	
12	Area m ² (ft2)					6.72 (72.0)	8.91 (96.0)	13.45 (144.0)	17.83 (192.0)	13.45 (144.0)	17.83 (192.0)	
	Clearance (mm)					65	65	75	75	115	115	
13	Area m ² (ft2)					7.28 (78.0)	9.6 (104.0)	14.58 (156.0)	19.32 (208.0)	14.58 (156.0)	19.32 (208.0)	
	Clearance (mm)					60	60	70	70	105	105	
14	Area m ² (ft2) Clearance							15.7 (168.0)	20.81 (224.0)	15.7 (168.0)	20.81 (224.0)	
	(mm)							63	63	100	100	
15	Area m ⁶ (ft2)									16.82 (180.0)	22.29 (240.0)	
	(mm)									90	90	

			6000	6500
			915± 1220	1220± 1220
			36 z 48	48 z 48
15	Area m ² (ft2)		16.82 (180.0)	22.29 (240.0)
1	Clearance (mm)		90	90
16	Area m ² (ft2)		17.94 (192.0)	23.78 (256.0)
	Clearance (mm)		85	85
17	Area m ² (ft2)		19.06 (204.0)	25.26 (272.0)
	Clearance (mm)		75	75
18	Area m ² (ft2)		20.18 (216.0)	26.75 (288.0)
	Clearance (mm)		2.8 72	72
19	Area m ² (ft2)		21.3 (228.0)	28.24 (304.0)
	Clearance (mm)		65	65
20	Area m ² (ft2)	_	22.42 (240.0)	29.72 (320.0)
	Clearance (mm)		63	63

		36 z 48	48 z 48
15	Area m ² (ft2)	16.82 (180.0)	22.29 (240.0)
	Clearance (mm)	90	90
16	Area m ² (ft2)	17.94 (192.0)	23.78 (256.0)
	Clearance (mm)	85	85
17	Area m ² (ft2)	19.06 (204.0)	25.26 (272.0)
	Clearance (mm)	75	75
18	Area m ² (ft2)	20.18 (216.0)	26.75 (288.0)
	Clearance (mm)	2.8 72	72
19	Area m ² (ft2)	21.3 (228.0)	28.24 (304.0)
	Clearance (mm)	65	65
20	Area m ² (ft2)	22.42 (240.0)	29.72 (320.0)
	Clearance (mm)	63	63

Benchmark with SIP

VITTS SP SCIENTIFIC

Benchmark 5000

Benchmark 3000 with CIP

Benchmark 5000

Convenient "service side" layout of clean room installation. Designed for easy accessibility to major components and maintenance points.

SP SCIENTIFIC

Benchmark 5000

alternate view of "service side"

Benchmark Design Flexibility System Installed in Isolator

Isolator Interface

SP SCIENTIFIC

Benchmark 5000 Internal Condenser

When space saving is paramount and chamber isolation is not required

Benchmark 5000 in Factory Acceptance Testing

Factory supplied FAT documentation helps shorten commission time and validates system performance

SCIENTIFIC

Benchmarks Design Flexibilty to Meet any Need

 External & Internal Condensers.
 Steam sterilizable (SIP) option
 Clean-in-place (CIP) options

Shelf Array Performance

Shelf to shelf +/-1.0°C at common measuring points under steady state conditions.

AISI type 316L stainless steel.

Ra25 standard Chamber and RA 32 condenser interior finish; an Ra 12 mirror finish is available as an options as well as electro-polishing.

Shelves

Shelf stack temperature uniformity - heat transfer fluid circuit designed in *parallel* (rather than in sequence)

Stainless braided Teflon hoses transport the fluid in and out of the shelves.

A compensating radiant shelf is included ensuring all product is under the same conditions

Full shelf compression is achieved in all Benchmark stoppering models. If room height is a problem we can reduce height of cylinder, and the shelves will have "daylight" between them at full stroke

SCIENTIFIC

Bottom Up Stoppering

SP SCIENTIFIC

Bulk Fixed Shelf Stack (watch the load height)

ControLyo[™] Nucleation On-Demand Technology

Load vials onto shelf of Lyophilzer at 4°C and equilibrate

- Pressurize system with inert gas (Nitrogen or Argon)
- Ramp temperature down to -4°C and begin equilibration for 45'

Depressurize to induce nucleation
All Steps are Programmed Into the Software
Continue to ramp down to -45°C to complete freezing step

Lyos Software with *ControLyo™* Nucleation On-Demand Technology

Cycle Status		per for s	istree.	-	F	reeze	Dry			a	Pressu	rizatio	n Activ	re	0		*		
Batch ID Ballistic	-		-		Recip	e Nam	e QCI	Run	_	_		P	roduc	t Name	Chris	B.	_	_	
Freezing/Thermal Treat	ment:																		
Step	1	2	3	4	5	6	7	8	2	10	11	12			C	ontrol V	With Cl	W 🧇	
Temperature SP	1.0	4.0	5.0	200											Gu	arantee	ed Soa	k 🧼	
Ramp Time	0	16	90									m	in		Produc	t Drive	n Mod	e 🗱	
Hold Time	60	90 1	440									m	in	-	Produc	t Temp	eratur	e later	1
	_	-	-			-						-	-		-	_	_		
Nucleation Contr	ol 🧼		Press	urize /	After St	tep	1	De	pressu	irize A	fter St	ep 2		3	Shelf L	oad 🤰	¢	r.	
Fires	_												_			_			
Shelf Temp SP -70	.0 °C			Hola	IIme	00	mm		Conu	enser	5r -9	0.0 °C		Initial	Vacuu	m SP	100	mTon	
Primary:																	Secon	dary:	
Step	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		
	¥.	×.	×.	4	4	4	4	4	¥.	×.	4	4	4	4	4	× .	4		
Temperature SP	-70.0	-60.0	-50.0	25.0	40.0	-20.0	10.0	0.0	40.0	20.0	-20.0	30.0	40.0	20.0	40.0	-10.0	40.0	°C	
Ramp Time	0	60	0	0	300	20	60	0	0	20	120	480	20	0	0	0	120	min	
Hold Time	60	20	30	60	30	30	20	30	60	30	60	30	60	120	60	60	60	min	
Vacuum SP	20	800	500	500	100	400	200	300	50	0	300	100	300	125	75	150	400	mTorr	
Vacuum Ramp Time	0	30	30	0	0	20	0	30	30	0	0	0	60	0	0	0	120	min	
Pressure Rise SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	mTorr	
PVG/CM DIFF	0	0	0	0	0		0		0	0		0						mion	
Product Storage:			В	ackfill/	Stopp	ering:													
Temperature SP 2	0.0 °	C.		E	Backfill	. *	-	mBar		PVG	CM D	IFF. 🔰	K						
Vacuum SP	0 r	nTorr		Stop	pering	**				Pre	ssure	Rise 🔰	K		Ret	est Tim	10 2	min	
				End	Cycle					Con	trol Ac	tion 1	Ŕ.		Close	ire Tim	ie 60	sec	
				100	- 1	-		-	+ <u>0</u>			Edit Re	cipe						
noptic Freeze Dry	s	MART		Leak 1	est	Funct	tion Te	st s	Semi-A	uto								1	_
															1			1	_

Typical Freezing Curve of Water

Uncontrolled Nucleation

G	SPS_Histor	icalTrend.grf	
Temperature/Vacuum 0.8 0.4 -0.1 -0.5 -0.9 -1.3 -1.3 -1.7 -2.2 -2.6 -3.0 -3.4 -3.8 -4.3	ed Nucleatio	n Nucleati	on Actuat
-4.7- -5.1- -5.5- -5.9- 12:09:38 12/15/2010 PROD PROBE 09 PROD PROBE 10 PROD PROBE 11 PROD PROBE 11 PROD PROBE 12 PROD PROBE 13 PROD PROBE 13 PROD PROBE 14 PROD PROBE 15 PROD PROBE 15 PROD PROBE 16 THERMOCOUPLE PROBE AVERAGE	12:10:58 12/15/2010 -4.4 -4.3 -4.2 -4.5 -4.6 -4.0 -4.7 -1.9 -4.1	e 12:12:18 12/15/2010	12:13:38 12/15/2010
Probes9_16	New Chart Mod	ify Chart Current Time > >>	Print Screen Close

Improved Uniformity

Primary Drying: Sublimation Front

Experimental Demonstration of Benefits of Controlled Nucleation

Increase in pore size and reduction in dry layer resistance

Faster primary drying

Reduced freezing stress on biologicals

Reduced reconstitution times

Drying time optimization

Virtis

Improved cake appearance

Reduced protein aggregation

SCIENTIFIC

Sever, R. 2010. Controlled Nucleation in Lyophilization. Effects on Process and Products. CPPR Freeze Drying Pharmaceuticals and Biologicals Conference. Oct. 1, 2010. Garmisch, Germany.

Poly bottom captured and upside down

New Poly-Bottom Trays (Dissasembled)

Partially assembled with sheet ready to be captured between 'bands'

Detail showing poly between 'bands'

Fully assembled tray

Optional Auto Locking Doors

Eliminates potential problems caused by manual latching

All latching occurs simultaneously and saves time with door closure

SP SCIENTIFIC

Virtis

Auto locking door details

Automatic locking

Separation between clean and mechanical spaces

Hydraulic and pneumatic versions

SIP ASME code compatible

Compatible with cylindrical or rectangular chambers

"T" Handle Doors

Available as a cost saving for SIP units Simplest technology

Auto-locking Constant Level Loading Door

Door & Isolator Interface Detail

Full Dress Panels

Dressed

Isolation Valve & Actuator Valve Sized to Avoid Vapor Restriction

Internal vs External Condensers

SP SCIENTIFIC

VirTis

Internal Condenser >Cost efficiency >Space saving >Short vapor path >Accessibility

External Condenser

 Barometric control is possible (iso valve)

- Faster turn around
- Less chance of oil back-streaming

Temperatures more uniformHigher ice capacities

Condenser Load Testing at Factory with Customer Verification

External Vertical Condenser

Refrigeration Options

SP SCIENTIFIC

SL- Single compressor direct expansion -60 C shelves –70C Condenser EL – Cascade system direct expansion -70 C Shelves –80C Condenser LL - Dual compressors in parallel direct expansion -60 C Shelves –75CCondenser RSL –Redundant system fluid condenser -60C shelf –65 C Condenser Upgrades to Screw compressors

Typical SL Synoptic (External)

SP SCIENTIFIC

Redundant Compressors and Pumps (Internal & SIP)

Carlyle Reciprocating Compressors

Worldwide availability
 Rugged & dependable
 Fiscally responsible

SP SCIENTIFIC

Refrigeration Gauges

Heat Transfer Pump

Leybold Vacuum Pumps

Vacuum Pumps with Roots Blowers

Steam in Place (SIP)

Injectibles SIP Longer Lead Time ASME Pressure vessel Orbital Welding \$Paperwork\$

Pressure and Vacuum sensors mounted on Triclover connections

Heated Head Capacitance Manometer

Ceramic Thermocouple Jacks

Clean Diaphragm Valves

0.2 Micron Hydrophobic N2 Filter

Clean-In-Place (CIP)

- Cleaning in place includes spray nozzles in the chamber and condenser
- Used to remove cyto-toxic products or insoluble residues

VirTis

SP SCIENTIFIC

CIP Skid

SP SCIENTIFIC

VITIS

Benchmark Control Platforms

Encore

Allen Bradley Micrologix controller. Many of the features available on the more expensive Maestro but limited options to keep the cost down. BE, EC-1, CM, PRCM security historical data export all available

(Standard)

Maestro

SLC 5/03 AB controls offers world wide support for parts and service. The Maestro has additional options such as 21cfr11 compliant security and System Integration Testing, unlimited product probes, customized programming. Best choice for high tech R& D facilities or GMP production.

SP SCIENTIFIC

Controls

Redundant Compressors and pumps

VirTis

SP SCIENTIFIC

Full N + 1 Redundancy

SP SCIENTIFIC

Intuitive Recipe Screen

Batch ID Herold	A CONTRACTOR OF	Previous Picture
Shelf Load Temperature 26.0 Deg C	Primary Drying	Splash Screen
Shelf Load	Step Rate/Hold Temperature Time Pressure Press. Rise 1 hold 25.0 Deg C 1 Min. 600 mT 0 mT	Synoptic
Thermal Treatment	2 hold 0.0 Deg C 0 Min. 0 mT 0 mT 3 hold 0.0 Deg C 0 Min. 0 mT 0 mT	Freeze Dry Screen
1 hold 0.0 Deg C 0 Min.	4 hold 0.0 Deg C 0 Min. 0 mT 0 mT 5 hold 0.0 Deg C 0 Min. 0 mT 0 mT	Leak Test Screen
2 hold 0.0 Deg C 0 Min. 3 hold 0.0 Deg C 0 Min.	6 hold 0.0 Deg C 0 Min. 0 mT 0 mT 7 hold 0.0 Deg C 0 Min. 0 mT 0 mT	Function Test Screen
4 hold 0.0 Deg C 0 Min. 5 hold 0.0 Deg C 0 Min.	8 hold 0.0 Deg C 0 Min. 0 mT 0 mT 9 hold 0.0 Deg C 0 Min. 0 mT 0 mT	Sterilization
6 hold 0.0 Deg C 0 Min.	10 hold 0.0 Deg C 0 Min. 0 mT 0 mT 11 hold 0.0 Deg C 0 Min. 0 mT 0 mT	CIP
8 hold 0.0 Deg C 0 Min.	12 hold 0.0 Deg C 0 Min. 0 mT 0 mT	Defrost
10 hold 0.0 Deg C 0 Min.	13 hold 0.0 beg C 0 min. 0 m1 0 m1 14 hold 0.0 beg C 0 Min. 0 mT 0 mT	Semi-Auto Functions
11 hold 0.0 Deg C 0 Min. 12 hold 0.0 Deg C 0 Min.	15 hold 0.0 beg C 0 Min. 0 m1 0 m1 16 hold 0.0 beg C 0 Min. 0 mT 0 mT	Historical Trend
	Prossure Rise Test NO Pressure Control Action no	Product Probe Screen
Freeze, Condenser and Evacuate	Valve Closed Time 5 Sec. Repeat Test Time 5 Min.	Maintenance Screen
Freeze Temperature 25.0 Deg C	Primary Instant P_RIse	Cycle Continue
Extra Freeze Time 0 Min. Vacuum Start Permit -20.0 Deg C	Secondary Drying	End Freeze Dry Cycle
(Condenser Temp.)	Step Rate/Hold Temperature Time Pressure Press. Rise	Cancel Current Cycle
(Vacuum)	Product Temperature 0.0 Deg C	Historical Export
	Pressure Rise Test NO Pressure Control Action no	Print Screen
	Valve Closed Time 5 Min. Delay Start Test Time 5 Min.	-
	Secondary Instant P Rise	Cycle Status Cycle Freeze Drying
		Total Time 0 M Phase Ready
Download Recipe	Storage remperature 23.0 Deg C	Phase Time 0 M Step 0
Completed - Okay	Start Recipe Manager Recipe Modification	Step Time 0 M Vacuum 10000 m
		Shelf Temp. 24.0 °

SP SCIENTIFIC

VirTis

Powerful Historical Trend Screen Allows data to be viewed in any interval for any available recorded data.

SP SCIENTIFIC

VirTis

Manual Operation for Easy Troubleshooting

Controls Considerations

Pirani (T/C) Vacuum Gauge

- Wire heated by electric current
- Molecules of process gas impinge upon wire and cool it
- More molecules = cooler
- Less molecules = hotter

CIENTIFIC

- Temperature correlates to Pressure
- Must be calibrated for specific process gas

Capacitance Manometer

	Enc	ore	C B	ycle Name: Cycleb latch ID: Dafchi	lame d		
emperature/Vacuum							
fu.u							
50.0-							
50.0-							
10.0-							
0.0-							
0.0-						54/08/2009 05:	:25:42
0.0-	1					04/08/2009 05	:25:42
0.0						10.0	
0.0-	1						
0.0-							
0.0-						-	
0.0-						-	
D.0-							
0.0-						D4/08/2009 05	:25:42
0.0-	Harrison and the second second			D4/08/200	9 05:25:42	100.0 04/08/2009 05:	:25:42
0.0-	hard Manufactures	all all and a second second	manyananananananana	mart who who who w	wwww	100.0	wwwww
0.0	16:43:12		00.43	12	-	04/08/2009 05: -84.4	25:42
¥/07/2009	04/07/2009	Time	04/08/2	០០១			04/08/20
ndenser Temperature # 1	-84.4	THIL					
elf Temperature mperature Reference (shelf)	10.1 10.0						
cuum (CM)	100.0						
cuum Reference	100.0						

Agreement with PVG/CM and Probes

Batch Records

Electrical Cabinet

Skid Mounted UPS for PLC & Workstation

Documentation & Validation

- Factory and Site Acceptance Testing (FAT/SAT)
- Customized Workbooks with Material and Welding Certifications
- Control System Integration Testing

Inverted GAMP 4 Triangle

User Requirement Specs Functional and Design Specs

Operational Qualification

Service & Support

Installation Supervision

Start-up Supervision

Maintenance, Operator or Lyophilization Training

PM Contracts

Extended Warrantee

Emergency Weekend Response

Time and Materials

Maintenance Audit Programs

Calibration / Validation Assistance

Partnership Through Support ...

... Together we can get the job done better!

Service and Support Mission

Our mission is Clear ... to provide support and services of the highest quality, customer experience and greatest possible value to our customers, thereby gaining an holding their respect and loyalty.

